O.P.Code: 20CE1010

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

M.Tech I Year I Semester Regular & Supplementary Examinations February-2025
THEORY OF STRUCTURAL STABILITY

(Structural Engineering)

ens.*	(Structural Engineering)		More Worlden 60		
Time		3 Hours		Max. Marks: 60	
1		(Answer all Five Units 5 x 12 = 60 Marks) UNIT-I	CO1	τ 2	121/
1		Derive the differential equation for maximum deflection and maximum bending moment in case of beam column with built in ends? OR	COI	L3	12M
2	a	Derive the differential equation of slope in case of continuous beams with axial loads?	CO1	L3	6M
	b	Derive the differential equation for beam columns with compressive force and distributed lateral load? UNIT-II	CO1	L3	6M
3		Derive expression for critical load in case of buckling of bars with intermediate compressive forces?	CO2	L3	12M
		OR			
4		Derive the effect of shear force on value of crippling load. UNIT-III	CO2	L2	12M
5	a	Explain the tangent theory and its assumptions and also show that critical load of tangent modulus.	CO3	L3	6M
	b	Explain the Tangent Modulus and Double Modulus theories. OR	CO3	L2	6M
6		Explain reduced modulus theory and its assumptions and also derive critical load of double modulus theory. UNIT-IV	CO3	L3	12M
7	a	Explain non-uniform torsion of thin walled bars of open cross section with neat sketches.	CO4	L3	6M
	b	Derive the expression for pure torsion of thin walled bars of open cross section.	CO4	L3	6M
		OR			
8		Briefly describe torsional buckling, lateral buckling and inelastic buckling.	CO4	L2	12M
		UNIT-V	0		
9		Derive the crippling load for simply supported beam of rectangular cross section subjected to pure bending.	CO5	L4	12M
		OR			
10		Derive the critical value of the compressive force for buckling of simply supported rectangular plates uniformly compressed in two direction. *** END ***	CO5	L3	12M